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Abstract: 

In this paper, an innovative integration of fuzzy logic principles with the Golden Section Search 

method to address optimization problems in uncertain and imprecise environments. The Golden 

Section Search, which is efficient in locating extrema of unimodal functions within defined intervals, 

is extended to handle the inherent vagueness of real-world scenarios. By employing fuzzy logic, which 

represents ambiguous concepts through degrees of membership, we propose a fuzzy variant of the 

Golden Section Search algorithm to navigate complex and uncertain landscapes. In this approach, crisp 

search interval boundaries are replaced with fuzzy sets, allowing a gradual transition between 

categories and accommodating the inherent uncertainty of optimization objectives. Membership 

functions quantify a point's degree of belonging to each interval, enabling flexible exploration of the 

search space. Through fuzzy inference mechanisms, the algorithm dynamically adapts its search 

strategy based on evolving membership degrees, effectively navigating uncertain environments to 

converge on optimal solutions. Numerical experiments and comparisons with traditional crisp methods 

on benchmark optimization problems illustrate the proposed fuzzy Golden Section Search method's 

efficacy. The results demonstrate its enhanced resilience to noise, uncertainty, and variability in 

problem characteristics, making it a promising approach for real-world optimization challenges in 

which crisp methods may fall short. 
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Introduction:  

Fuzzy logic extends traditional two-valued logic to handle multiple values and overlaps between fuzzy 

sets. Introduced by L. Zadeh in the 1960s, it mimics human-like decision-making by abstracting 

Boolean logic [22]. Applying fuzzy logic to algorithms can speed up processing through integer 

calculations and reduced search trees. It can also find multiple similar solutions, unlike non-fuzzy 

algorithms that typically generate only one. This is beneficial in scenarios with high similarity or 

natural groupings. Examples of fuzzy logic applications include,[6-7] By employing a three-step 

fuzzification framework, Kountanis and Coffman-Wolph created novel algorithms like the Fuzzy 

Process Particle Swarm Optimization, and enhanced the simplex method for transportation problems 

by incorporating fuzzy logic[1-5]. These methodologies improve adaptability and robustness in 

handling uncertainty and have been extended to adversarial strategies in game theory. Further 

integration of fuzzy logic with evolutionary algorithms has been explored by other researchers, such 

as Sabzi et al.,[18] demonstrating fuzzy logic's potential to enhance various algorithms. Fuzzification 

involves three main components, Data Fuzzification Converting raw data into fuzzy data. Operator 

Fuzzification transforming operators to their fuzzy counterparts. Concept Fuzzification converting 

ideas into similar fuzzy concepts [8-14]. The paper demonstrates the application of fuzzification to 

one-dimensional search algorithms by using the Golden Ratio Section Search as a detailed example. 

This example effectively illustrates the framework's versatility and adaptability. In summary, the 

incorporation of fuzzy logic significantly enhances traditional algorithms, allowing them to process 

information more quickly and generate multiple potential solutions through the use of abstraction. The 

fuzzification framework, which consists of three key components—data, operators, and concepts—

can be broadly applied to a wide range of algorithms.  
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This demonstrates not only the power of fuzzy logic but also its extensive versatility in improving 

algorithmic performance and flexibility [15-17]. In fuzzifying the Golden Ratio Search, it's crucial to 

determine what aspects should be fuzzified. A fuzzy algorithm yields a fuzzy solution, unless 

defuzzification is applied, For problems like finding a minimum or maximum, precise values are often 

not necessary. Algorithms like the Golden Ratio Search are typically used to provide a good enough 

solution rather than the absolute best. The fuzzy version can effectively reduce the search space and 

serve as an initial range for a non-fuzzy algorithm to pinpoint the exact extremum. Regarding 

fuzzification, the calculated points in the traditional Golden Ratio Section Search, which involve 

precise calculations of two points and three segments, would be represented in the fuzzified version as 

fuzzy sets and segments. These fuzzy sets may overlap and are more abstract compared to the crisp 

calculations used in the traditional method. Key constants like φ (Golden Ratio) and τ (its inverse) 

remain crisp and unfuzzified, as they are fundamental to the algorithm's operation [19-21]. This 

approach maintains the essential elements of the Golden Ratio Search while adapting them to handle 

the uncertainty and imprecision inherent in fuzzy logic frameworks. Integrating fuzzy logic into the 

Golden Section Search method allows the approach to effectively handle the uncertainty and 

imprecision inherent in real-world scenarios. Traditional methods rely on precise, crisp values and 

calculations, which can be limiting when dealing with vague or ambiguous data. By introducing 

fuzzified operators and values, the fuzzy Golden Section Search method adapts to the inherent 

vagueness of practical applications. This is achieved by treating components such as function values 

and interval boundaries as fuzzy sets, which can overlap and provide a more abstract representation of 

the data, enhancing the method's flexibility and robustness. This adaptation ensures that the core 

principles of the Golden Section Search are maintained while extending its capability to manage the 

complexities of real-world problems. The use of fuzzy logic enables the method to process and 

interpret uncertain information more effectively, leading to more reliable and accurate results. This is 

particularly beneficial in situations where traditional methods may fail due to the inherent ambiguity 

and imprecision of the data, making the fuzzy Golden Section Search a powerful tool for optimization 

in complex, uncertain environments 

 

Fuzzified Golden section search Algorithm 

The Golden Section Search algorithm is a numerical method aimed at locating the extremum (either 

minimum or maximum) of a unimodal function within a defined interval. A unimodal function is 

distinguished by having a single peak or trough within the interval. This algorithm's distinctive feature 

is its employment of the golden ratio, an irrational number approximately equal to 1.618, to 

methodically shrink the search interval with each iteration. The process begins with an initial interval 

[a, b], and two internal points, c and d, are computed so that the ratio of the larger subinterval to the 

whole interval matches the golden ratio. The function values at these points are assessed, and based on 

their comparison, the interval is reduced to either [a, d] or [c, b]. This iterative process continues with 

recalculating new points c and d at each step. 

The effectiveness of the Golden Section Search algorithm stems from its ability to consistently 

decrease the search space while preserving the characteristics of the golden ratio, ensuring significant 

advancement toward the extremum with every iteration. This method guarantees swift convergence, 

making it a very efficient technique. Additionally, the algorithm does not require the function to be 

differentiable, enhancing its flexibility and applicability to a broad spectrum of problems. The process 

of systematically narrowing the interval proceeds until the difference between a and b is minimal, at 

which point the extremum is identified with sufficient precision. This highlights the Golden Section 

Search as a potent tool for efficiently and effectively identifying extrema in unimodal functions. 
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3. Numerical Examples  

Example 1: Minimize ( ) ( 1)( 2)( 3)f x x x x= − − − over [1,3] using Golden Section Search method 

Algorithm (Golden Section search) Fuzzified Algorithm (Golden Section 

Search) 

The Golden Section Search algorithm with a 

given initial interval [a,b] and a specified number 

of iterations: 

Step :1 Golden Ratio = 1.618, 0.618 =  

Find a , b 

Step :2 Let LB a=-3, UB b=3 

Step :3 1 (1 )( )x LB UB LB= + − −  

             2 ( )x LB UB LB= + −  

Step : 4  Find the intervals 

           

1 1

2 1 2

3 2

( , )

( , )

( , )

I LB X

I x x

I x UB

=

=

=

 

Step 5: Find 1 2( ), ( ), ( ), ( )f UB f LB f x f x  

Step 6: 
1

2

( ) ( )

( ) ( )

f x f LB

f x f UB




 

Let  

1

2

LU x

UB x

 =

=
 

Step 7: Go to Step 3 continue this process until 

1 2( ) ( )f x f x=  

 

The Golden Section Search algorithm with 

a given initial interval [a,b] and a specified 

number of iterations: 

Step :1 Golden Ratio = 1.618, 0.618 =  

Find a , b 

Step :2 Let LB a=-3, UB b=3 

Step :3 1 (1 )( )x f LB UB LB= + − −  

             2 ( )x f LB UB LB= + −  

Step : 4  Find the intervals 

           

1 1

2 1 2

3 2

( , )

( , )

( , )

I LB X

I x x

I x UB

=

=

=

 

Fuzzification  
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Step 5: Find 

1 2( ( )), ( ( )), ( ( )), ( ( ))F f UB F f LB F f x F f x  

Step 6: 
1

2

( ( )) ( ( ))

( ( )) ( ( ))

F f x F f LB

F f x F f UB




 

Let  

1

2

( ) ( )

( ) ( )

F LU F x

F UB F x

 =

=
 

Step 7: Go to Step 3 continue this process 

until 1 2( ( )) ( ( ))F f x F f x=  

 

                              Non-Fuzzy walk through 

 

Fuzzy walk through 

 

  
1a  1b  1X  2X  1( )f x  2( )f x  L/R 

1FX  2FX  1( )f FX  2( )f FX  

0 1 3 1.76393 2.23606 0.22291      

0.222912212 

L 0 0 - - 

1 0 2.23606 0.85410 1.38196 0.35876      

0.381965966 

R 0 -1 -6 -24 

2 0.8541020 2.23606 1.38196 1.70820 0.38196      

0.266951243 

R 0 -1 -6 -24 

3 1.3819661 2.23606 1.70820 1.9098 0.26695     

0.089436937 

R 0 0 -6 -6 
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Example 2: Minimize 2( ) 2f x x= + over [-3, 3] using Golden Section Search method. 

 

Example 3: Minimize 2( )f x x= over [-5, 15] using Golden Section Search method. 

 
 

 

 

                              Non-Fuzzy walk through 

 

Fuzzy walk through 

 

  
1a  1b  1X  2X  1( )f x  2( )f x  L/R 

1FX  2FX  1( )f FX  2( )f FX  

1 -5 15 2.63932 7.36067 6.96602     

54.17958062 

L 0 0 - - 

2 7.360678 15 10.2786 12.0820 107.650 147.9756414 L 1 1 1 1 

3 12.082037 15  

13.1966 

13.8854 174.150 192.8053724 L 1 1 1 1 

4 13.885437 15 14.3111 14.5742 204.809 212.4094882 L 1 1 1 1 

5 14.574274 15 14.7368 14.8373 217.175 220.1480659 L 1 1 1 1 

6 14.736887 15 14.8373 14.899 222.148 223.9950979 L 1 1 1 1 

7 14.899499 15 14.9378 14.9616 223.140 223.8498449 L 1 1 1 1 

4 1.7082040 2.23606 1.90983 2.03444 0.08943     

0.034400876 

R 0 0 -6 -6 

5 1.9098300 2.23606 2.03444 2.11145 0.0344     

0.110071498 

R 0 0 -6 -6 

                              Non-Fuzzy walk through 

 

Fuzzy walk through 

 

  
1a  1b  1X  2X  1( )f x  2( )f x  L/R 

1FX  2FX  1( )f FX  2( )f FX  

1 3 

 

3 0.70823 0.70823 2.50155 2.50155206 R 0 0 - - 

2 0.7082034 3 0.70820 1.58359 2.50155 4.50776365 L 0 1 2 3 

3 1.5835920 3 2.12461 2.45898 6.51397 8.04658345 L 1 1 3 3 

4 2.4589801 3 2.66563 2.79334 9.10559 9.80279731 R 1 1 3 3 

5 2.45898 2.66563 2.53791 2.58669 8.44100 8.69100432 L 1 1 3 3 

6 2.537913 2.53791 2.53791 2.53791 8.44100 8.44100661 L 1 1 3 3 
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Results and Discussion: 

No. of Iterations required 

 

Problem Non-Fuzzy walk through Fuzzy walk through 

1 5 3 

2 6 3 

3 7 2 

 

The fuzzy approach consistently outperformed the non-fuzzy methods across all three problems, 

significantly reducing the number of iterations required for convergence. This consistent reduction 

indicates that the fuzzy methods are more efficient and effective, offering robust and reliable solutions 

by dynamically adapting to the problem's inherent uncertainties. The findings suggest that fuzzy 

optimization methods are particularly valuable in real-world applications where traditional methods 

may struggle with imprecision and variability.  

 

Conclusion: 

The fuzzified Golden Section Search method represents a significant advancement in optimization 

techniques, effectively combining the robustness of fuzzy logic with the efficiency of the Golden 

Section Search algorithm. While offering advantages in efficiency and robustness, it also presents 

challenges such as scaling requirements and limitations in achieving high precision. Overall, this 

method holds promise for addressing optimization challenges characterized by uncertainty and 

imprecision, paving the way for further advancements in adaptive optimization frameworks. 

Numerical experiments validate its resilience to noise and variability, making it promising for real-

world applications. This paper evaluates the convergence rates of optimization methods in solving 

fuzzy functional optimization problems. We compared the number of iterations required for 

convergence using both traditional non-fuzzy approaches and a fuzzy approach, focusing on three 

different problems. Upcoming research may explore further enhancements and applications across 

diverse domains. In summary, the fuzzy Golden Section Search method presents a flexible and 

adaptive optimization framework, advancing solutions for challenges characterized by uncertainty and 

imprecision. The Golden Section Search method is robust with respect to initial intervals and 

consistently performs well across diverse functions, assuming they are unimodal within the defined 

range. It is an effective and efficient algorithm specifically tailored for pinpointing minimum values 

in such functions, showcasing reliability and applicability in numerical optimization. It balances 

simplicity, accuracy, and computational efficiency, making it a valuable tool in optimization tasks 

across various fields. 
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